Войти используя аккаунт
Войти используя аккаунт:
Логин Пароль Забыли свой пароль?

Исчезающие без вреда

10.05.2011 / 14:43

Отказ от массовой полимерной упаковки, начавшийся в той или иной форме в разных странах мира, пока является доброй волей этих государств. Однако ужесточающиеся год от года экологические требования на уровне международного сообщества рано или поздно поставят вопрос об утилизации использованных полимерных изделий перед всеми странами мира. То, что сейчас кажется чудачеством экологов, станет обязательной нормой. "Нефтехимия РФ" обратилась к теме биоразлагаемых пластиков, чтобы понять, насколько развиты эти технологии в мире и могут ли они быть реальной альтернативой традиционным полимерам.

Полностью материал читайте в новом номере журнала "Нефтехимия Российской Федерации".

Синтетические полимеры, обладая уникальными свойствами и относительно низкой ценой, в последние десятилетия безраздельно господствуют практически во всех сферах человеческой жизни. Однако эти соединения имеют два принципиальных недостатка. Во-первых, подавляющее большинство пластиков производится из невозобновляемого углеводородного сырья, запасы которого ограничены. Во-вторых, большинство полимеров не разлагаются в природе, что приводит к загрязнению окружающей среды и проблемам утилизации.

Борьба с пакетами

Если первое соображение пока не кажется таким уж реальным, то экологические мотивы уже заставляют многие страны и регионы ограничивать использование полимеров. Так, в Тайване с 2003 года полимерные пакеты запрещены к использованию во всех торговых центрах. То же произошло в Лос-Анджелесе в 2007 году. С пластиковыми пакетами борются в Кении, Руанде и Танзании. В Бангладеш использование пластиковых пакетов запрещено полностью, после того как было обнаружено, что они, засорив дренажные системы, явились основной причиной наводнений в 1988 и 1998 годах, которые затопили 2/3 страны. Во многих странах Европы существуют налоги на пластиковые пакеты. В декабре 2010 года их запретили в Италии.

Если меры по охране среды будут ужесточаться, а цены на нефть и газ продолжат расти, то возможна смена парадигмы в области производства и использования полимеров, то есть переход к производству биоразлагаемых пластиков из возобновляемого сырья наступит гораздо быстрее, чем мы этого ожидаем.

Объем мирового производства биопластиков в 2009 году составил 695 тыс. тонн. Если рассматривать предкризисный период, то с 2003 по 2007 год рост этого рынка составил 38% в мире и 48% в Европе.

Все производимые и изучаемые технологии биоразлагаемых пластиков делятся на четыре группы. Первая – это полимеры, выделенные из биомассы, и природные полимеры: крахмал, целлюлоза, белки. Вторая – полимеры, производимые микроорганизмами в ходе своей жизнедеятельности (полигидроксиалканоаты, бактериальная целлюлоза). Третья – полимеры, искусственно синтезированные из природных мономеров (например, полилактиды). И последняя группа – традиционные синтетические пластики с введенными в них биоразрушающими добавками.

Эти технологии активно развиваются в странах с постиндустриальной экономикой. Прежде всего, в США и Европе. Свои разработки и внедрения есть в Китае, Японии, Корее. А вот в России поиск технологий получения полимеров из возобновляемого сырья и биодеградируемых пластиков идет не активно. С одной стороны, это странно, ведь Россия располагает большими ресурсами достаточно дешевых зерновых, которые могли бы служить сырьем для производства биополимеров. Но с другой стороны, это достаточно закономерно. Научные разработки в области экотехнологий у нас в принципе не популярны, да и получить на них финансирование научным центрам (в основном, государственным) довольно сложно. С другой стороны, уровень потребления традиционных пластиков в России крайне низкий. Мы просто не производим столько пакетов, чтобы они всерьез угрожали окружающей среде. Насыщение базовых потребностей в традиционных полимерах еще не произошло, поэтому кажется, что заниматься биотехнологиями в нефтехимии еще рано. Да и нефти в России пока достаточно.

Природные полимеры

Направление по использованию природных полимеров, прежде всего, интересно тем, что ресурсы исходного сырья постоянно возобновляемы и практически не ограничены.

Наиболее широко из ряда природных соединений в биоразлагаемых упаковочных материалах используется крахмал. Пластические массы на основе крахмала обладают высокой экологичностью и способностью разлагаться в компосте при 30 °С в течение двух месяцев с образованием благоприятных для растений продуктов распада. С целью снижения себестоимости биоразлагаемых материалов бытового назначения (упаковка, пленка для мульчирования в агротехнике, пакеты для мусора) используется неочищенный крахмал, смешенный с поливиниловым спиртом и тальком.

В качестве возобновляемого природного биоразлагаемого начала при получении термопластов активно разрабатываются и другие природные полисахариды: целлюлоза, хитин, хитозан. Полимеры, полученные взаимодействием целлюлозы с эпоксидным соединением и ангидридами дикарбоновых кислот, полностью разлагаются в компосте за 4 недели. На их основе формованием получают бутыли, разовую посуду, пленки для мульчирования. Из тройной композиции (хитозан, микроцеллюлозное волокно и желатин) получают пленки с повышенной прочностью, способные разлагаться микроорганизмами при захоронении в землю. Они применяются для упаковки, изготовления подносов и т.д. Пищевую упаковку производят также из природного белка – цеина.

Исследования промышленных способов получения биополимеров начались в конце 1980-х в Италии компанией Novamont S.p.a. Сегодня она располагает заводом продуктов на основе крахмала мощностью 60 тыс. тонн в год. В Германии работают фирмы Biotec (20 тыс. тонн в год) и BIOP Biopolymer Technologies (3,5 тыс. тонн в год), причем последняя также торгует лицензиями на собственную технологию получения биопластиков. В Голландии базируется компания Rodenburg Biopolymers с мощностями 40 тыс. тонн. Компания Limigrain Céréales Ingrédients производит 10 тыс. тонн полимера на основе крахмала. В США крупным производителем является Cereplast Inc.

Отходы бактерий

При росте некоторых микроорганизмов на средах, содержащих питательные углеродные вещества и имеющих дефицит азота или фосфора, микробные клетки начинают синтезировать и накапливать полигидроалканоаты (PHA), которые служат им резервом энергии и углерода. При изменении окружающей среды в случае голода микроорганизмы могут разлагать PHA и использовать образующиеся продукты для питания. Это свойство бактерий человек использует для промышленного получения полигидроалканоатов. Важнейшими из них являются полигидроксибутират (PHB) и его сополимер с полигидроксивалератом (PHV).

Полигидроксиалканоаты – это полностью биодеградируемые пластики. В компосте при влажности 85% и температуре 20-60 оС разлагается на воду и углекислый газ за 7-10 недель.

PHV бактериального происхождения был открыт в 1925 году во Франции у бактерий Ralstonia entrophus и Bacillus megaterium. Первое промышленное производство сополимеров PHB-PHV организовала в 1980 году английская фирма ICA. Полимер получил название Biopol. Он характеризуется относительной термостабильностью, пропускает кислород, устойчив к агрессивным химикатам и имеет прочность, сопоставимую с полипропиленом.

Biopol выпускается до сих пор несколькими компаниями, но объемы не превышают 10 тыс. тонн в год. Дело в том, что его стоимость составляет $10-15 за кг – это в 8-10 раз выше, чем у традиционных пластиков. Поэтому основные сферы применения – медицина (биоразлагаемые шовные нити, штифты, пленки, капсулы для доставки лекарств), упаковка некоторых парфюмерных товаров, изделия личной гигиены.

В апреле 2010 года в США в городе Клинтон компанией Тelles был запущен завод по производству PHBV мощностью 50 тыс. тонн в год. Пластик получил название Mirel, его предполагаемая цена – $4,5-5,5 за кг. Отметим, что традиционный полиэтилен низкого давления стоит в России около $2,2-2,5 за кг.

Сырьем для предприятия Тelles служит глюкоза, получаемая из осахаренного кукурузного крахмала. Стоимость сырья в себестоимости PHBV составляет при этом 60%. Поэтому основные усилия ученых и технологов направлены на поиск дешевого сырья для производства PHA. Для России перспективным сырьем сегодня является крахмал зерновых (пшеница, рожь, ячмень) и, в перспективе, производные древесного сырья.

Имеются штаммы микроорганизмов, синтезирующие PHBV из метанола и метана, что может быть интересно для производителей соответствующего сырья, так как за один дополнительный передел продукции цена товара повышается почти в 20 раз.

Клетка – завод мономеров

Бактерии могут производить не только готовые полимеры, но и сырье – мономеры, из которых уже искусственно можно получать пластики. Самым распространенным биоразлагаемым полимером из этой группы является полимолочная кислота (PLA). Производство мономера – собственно молочной кислоты – микробиологическим способом дешевле традиционного, так как бактерии синтезируют ее из доступных сахаров в технологически несложном процессе.

Сам полимер молочной кислоты (точнее, смесь двух оптических изомеров одного и того же состава) имеет достаточно высокую термическую стабильность: температуру плавления 210-220 °С, температура стеклования – около 90 °С. Изделия из PLA характеризуются высокой жесткостью, прозрачностью и блеском, напоминая в этом отношении полистирол. В качестве пластификатора можно использовать сам мономер – молочную кислоту.

Патент на способ промышленного получения PLA был выдан компании DuPont еще в 1954 году. Однако коммерциализация этого биопластика началась лишь в XXI веке. В 2002 году в городе Блэр в США фирмой Nature Work был запущен завод мощностью 140 тыс. тонн по производству PLA из глюкозы кукурузного крахмала. Сегодня это крупнейший производитель PLA в мире, его мощности уже 280 тыс. тонн. В ближайшие 5-10 лет планируется строительство третьего завода, сырьем для которого будут практически бесплатные отходы переработки кукурузы. Продукцию завода в Блэр перерабатывают множество компаний, только в Европе их более 30.

В Старом Свете также функционирует несколько заводов PLA, ряд мелких производителей есть в Азии. Известные мировые инжиниринговые компании также осваивают новую нишу. Лицензии на технологию PLA предлагают, например, Sulzer Chemtech Uhde Inventa-Fischer.

PLA самый дешевый из биопластиков, его цена – $2,2-4,5 за кг. Свойства PLA определяют его широкое применение: он устойчив к действию ультрафиолетового света, плохо воспламеняется и горит с малым выделением дыма. Переработка PLA возможна практически любыми современными методами вплоть до экструзии пленок. Кроме того, PLA – полностью биоразлагаемый полимер. Изделия из PLA при компостировании полностью разлагаются на воду и углекислый газ за период 20-90 дней.

Главные области применения PLA – упаковка (сумки, тара для пищевых продуктов), бутылки для молока, соков, воды, но не газированных напитков, так как PLA пропускает углекислый газ. Из PLA также изготавливают игрушки, корпусы сотовых телефонов, компьютерные мышки и ткани.

Пока развитие этого биопластика сдерживается его ценой. Однако прогнозируется, что новые технологии сделают его конкурентоспособным с полиэтиленом и полипропиленом уже до 2020 года.
Вернуться в раздел